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1. INTRODUCTION

Let A p denote the set of functions analytic in Izi < p but not on Izi = p
(1 < P < OCJ) and let L n _ 1(z; f) denote the Lagrange polynomial interpolant
off(z)EA p in the nth roots ofunity.lff(z) has the Taylor series expansion
f(z)=L:~~oavzv, set

n-l

Pn-1,j(z;f):= L ajn+vzv,
v=o

j=O, 1,.... (1.1 )

Then we have the following generalization [2] of a beautiful result due to
J. L. Walsh [12]:

THEOREM A. For fE A p , and any nonnegative integer I, we have

lim {Ln_1(Z;f)- t Pn-1)Z;f)} =0,
n--oo ./=0

(1.2)

the convergence being uniform and geometric for all Izi ~ Z < / + 2.

Moreover, (1.2) is best possible in the sense that it is not valid at each point
of Izi = p/+ 2 for all fE A p •

Recently, many generalizations of this theorem and other related results
have appeared in the literature [1, 2, 5-7]. In what follows, we extend
some of the results of [2] including a recently proven conjecture of theirs
[10].
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More specifically, let m and n be positive integers and let w =
exp(27tijmn). Set fq(z) = f(zw q), q =0, 1,..., m - 1, and define the averages

and

(1.3 )

1 m~ I

An_tjz;f):= m I Pn_tjzw-q;fq),
q=O

From (1.1), it is easy to see that

j=O, 1,.... (1.4 )

A .( 'f)={Pn-tJz;f)n-I,} Z, 0,
if j=sm, s=O, 1,...,

otherwise.

We note that for 0~q~m-1, Ln_l(zw~q;fq)lz~wi",+q=fq(wjm)=

f(w Jm +q),j = 0, 1,..., n - 1, so that Ln _I(ZW -q; fq) may be considered as the
Lagrange interpolant of f in the nodes {w Jm + q}j:: 6.

Our main result is

THEOREM 1. Let fE A p and I be a nonnegative integer. Let p be the least
positive integer such that pm > I. Then

'if Izl < pi + Pm, (1.5)

the convergence being uniform and geometric for all Izi ~Z<pl+f3m.
Moreover, the result (1.5) is best possible.

Note that if m =1= 1, then Theorem 1 reduces to Walsh's original result.
If m = 1 (l~ 0), then Theorem 1 yields Theorem 1 in [2].

In Section 2, we prove Theorem 1 and indicate related results. Section 3
is devoted to Hermite interpolation in the roots of unity. The results of this
section indicate how those in [2, Sects. 3, 4J and [10, Sects. 1-4] are
related. In the final section, some corresponding results for lacunary,
2-periodic lacunary, and general Hermite interpolation are outlined.

2. AVERAGE OF LAGRANGE INTERPOLANTS

Proof of Theorem 1. Let r be any circle Iwi =R with 1 < R < p. It can
be directly verified that

1 f f(w)(w" _zn)
L,,-I(z;/)=-2' ( )( n l)dw

1rl r w-z w -
(2.1 )
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1 f f(w)(wn_z n)
P n- 1jz;f)=-2' ( ) U+l)n dw,m r w-z w

Consequently,

j=o, 1,.... (2.2)

/ 1 fLn-1(z;f)- I Pn-l,)z;f)=-z' f(w)k(w,z)dw (2.3)
j=O m r

where

(2.4)

Therefore,

/ 1
Ln_1(zw-q;fq)- L Pn- 1(zw-

q
;fq)=-2.f fq(w) k(w,zw-

q
) dw

j~O m r

=~f f(t)w-qk(tw-\zw-q)dt
2m r

(2.5)

where we used the change of variable t = wwq
• In view of (1.3) and (1.4),

the difference in (1.5) is given by

/ 1 fAn_1(z;f) - L An_1,j(z;f) =-2' f(t) k1(t, z) dt (2.6)
j~O m r

where

With the help of (2.4), we see that

(tn_7n) 00 (1 m-l )
k 1(t, z) = ~ n L t - jn - L w jqn .

(t-z)t j=/+l m q=O

The last sum in (2.8) is zero unless j = sm (> I), s = fJ, f3 + 1'00' . Thus,

_ un _ zn)

- (t-z)(tmn_l) t(p-l)mn+n'

(2.7)

(2.8)

(2.9)
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In order to bound the integral in (2.6), choose M so that If( t)1 ~M on
r. Then for all Izi ~ jJ. (jJ. ~ p), we have from (2.6) and (2.9)

The desired uniform and geometric convergence of (1.5) follows easily from
(2.10) by using techniques similar to those in [2, p. 158].

To see that this is best possible, consider the special function J(z) :=
(p-z)-'EA p • It can be verified by direct computation that

If we set z = p' + 13m this last expression tends to (p' + 13m - p) - , > 0 as
n~ 00. This completes the proof.

Remark 1. In [7] Rivlin obtained a result similar to Theorem 1 by
using the least-squares approximation of degree n-1 to f on the
(mn + d)th roots of unity (d~ 0). If 1=0 in (1.5) above, Theorem 1 reduces
to Rivlin's result for the special case d = O. (Actually, a more general
averaging technique can be used to obtain Rivlin's result for d~ O. These
methods along with some comments on the sharpness of this overcon
vergence (see [9]) will appear in a future paper.) To see this, note that if
y=jJ.n+v, O~v~n-l, then Ln_,(z;zY)=zv. Thus

OCJ n-l

Ln_,(z;f) = L L a/m+v zv,
jl~OV~O

00 n-l

Ln_,(zw-q;fq)= L w-jlqn L ajln+v zv.
jl~O V~O

Upon averaging, we have

00 n-l

An_,(z;f)= L L ajlmn+v zv.
jl=Ov=O

(2.11 )

Consideration of (2.11) indicates that An _, (z;f) is the polynomial
Lmn-,(z;f) truncated to a polynomial of degree n -1. That is, An_,(z;f)
is the least-squares approximation of degree n -1 to f on the (mn)th roots
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of unity (see [7]). Also, from (1.1) it is clear that An _ 1,0(Z; f) == Pn-I(z;f).
Thus, for 1=0, (1.5) reduces to

lim {A n- 1(z;f)-Pn- 1(Z;f)} =0,
n ~ 00

(2.12)

This is the result mentioned above.

Remark 2. If we allow m to vary and replace An_ 1(z;f) by
An_1(z;f;m) to indicate the dependence on m, we have from (2.12)

m~ 00

This suggests that, in general, the average polynomial A n _ 1(z;f) is an
appropriate "near-best" approximation to f(z) (see [4]). Results related to
this observation will appear in a separate paper.

Let C(D p) denote the functions continuous in Dp= {izi ~ p}. We con
clude this section with the statement of

THEOREM 2. Letf(z)EApnC(Dp) and let f3 and I be as in Theorem 1.
Then

the convergence being uniform and geometric for aUlzl ~ Z < pi + pm.

3. HERMITE INTERPOLAnON

In this section, we extend Theorem 1 stated above to the case of Hermite
interpolation in the roots of unity. For r a nonnegative integer let
brn_l(z;f) be the unique polynomial which interpolates to fEAp and its
first (r - 1) derivatives in the nth roots of unity. That is,

d" b ('f)1 . -f(V)( jm)dz V rn-l Z, z=wJm- W,

for v=0, 1,..., r - 1.

j=0,1, ...,n-1, (3.1 )

LEMMA 1. Fix 0 ~ q ~ m - 1. The polynomial brn _ 1(zw - q;fq) has the
property that

for j=O, 1, ...,n-1 andv=O, 1,...,r-1.
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The proof of Lemma 1 follows immediately from (3.1).

Remark 3. Evidently, the polynomial on the left of (3.2) is the unique
polynomial interpolant of ! and its first (r - 1) derivatives in the points
{wJn+q}j:J.

Now define

rn -1

Brn-I,o(z;f):= L avzv

v=o
n-I

Brn_Ijz;f):= L av+(r+J-I)nbrn-l(z; gv),
v~o

where gvjz) := zV+ (r+J-I)n. Finally, define the averages

j= 1, 2,...,

(3.3 )

1 m-I

Hrn_l(z;f):= - L brn_l(zw-q;!q)
m q~O

1 m-I

Hrn-l.Az;f):= m L Brn_1,j(zw-q;!q),
q=O

We shall now prove

j=O, 1,....

(3.4 )

THEOREM 3. Let fE A p and let I and fJ be as in Theorem 1. Then

lim {Hrn _ I (z;f) - ±H rn _ Ijz;f)} = 0,
n_ 00 j=O

Vlzl<pl+Pm/r, (3.5)

the convergence being uniform and geometric for all Izl";; Z < pI + pm/r.

Moreover, the result (3.5) is best possible.

Remark 4. Theorem 3 generalizes Theorem 1 of the previous section in
the sense that it reduces to the latter in the case r = 1. If m = 1, Theorem 3
reduces to Theorem 3 of [2].

For the proof of Theorem 3, we will need the following lemma.

LEMMA 2. For j = r - 1, r - 2, ..., we have

r-I
brn_1(z; gO,J-r+d= L L1;Jj)zAn

A~O

where

(3.6)
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Proof From [2, Eqs. (3.4) and (4.4)] there follows

(3.7)

o~ v~ n - 1, j = 0, 1'00' , Equation (3.6) follows directly from (3,7).

Proof of Theorem 3. In [2, p. 165] it was shown that

/ 1 fbrn-1(z;f)- I Brn - 1jz;f)=2---: f(w)K(w,z)dw (3.8)
j~O 1[/ r

where

K( )
.= wn_zn

~ brn-1(z; gO.j-r+d
w,z. L. U+l)n'

w-z j~/+r W
(3.9)

(Here, we have again used r to denote any circle Iwl = R, 1 < R < p.)
Using Lemma 2, we see that

(3.10)

Appealing to (3.8) we find

/

brn_1(zw-q;fq)- I Brn_1,j(zw-q;fq)
j=O

Letting

tn_ zn (1 m - j )
KU,A)(t z)· = ..d (J') zAn - " W nqU - A) (3.12), . (t-Z)tU+j)n A m L.

q=O

and with the help of (3.4) and (3.11), we see that the difference in (3.5) is
given by

/ . 1 fHrn_j(z;f)- I Hrn_j)z;f) =-2. f(t) Kj(t,z) dt (3.13)
j=O 1[/ r

where

r- 1 00

Kj(t,z):= I I K(j,A·)(t,z).
A~Oj~/+r

(3.14)
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From (3.12), we see that K(j,,!j(t, z):= 0 unless j - A= sm, s = Il'!, Il'! + 1,...,
where

(3.15)

otherwise.

m divides (r +1- A),~ r+I-A if

~'~! ['~~J+ 1,

(Definition (3.15) follows from the fact that sm ~ r +1- A.) This together
with (3.12) and (3.14) yields

r - 1 (XJ

K1(t, z) = L L K(Hsm.,!)(t, z)

(t"_z")r-l oc z,!"
= (t-z) '!~O\~' Ll,!(A+sm) t(,!+sm j,,·

Since 1l'!~f3 for A=O, 1,..., r-l, we have for Izi >p and ItI=R

(3.16)

jzl rn
IK(t, z)1 ~ R(r+pm j" M (3.17 )

where M is a constant that does not depend on n. This last inequality can
be used to establish (3.5).

To see that (3.5) is best possible, consider again the special function
](z)=(p-Z)-l. Using (3.1)-(3.4), it can be verified directly that

I

Hrn_1(z;])- L Hrn_1,;{z;])
)=0

r-l 00 n-l 7v+A.n

= L L L Ll,!(A+sm) l+:+(Hsmj,,· (3.18)
,! = 0 s ~ JJ, v ~ 0 p

Using Lemma 2 in [2] and recalling that 1l'!~f3, we have for z=pl+Pm/r

• I • 1 n- 1Ll r_ l(r-l+f3m) -mn
H"'-l(Z,J)- L H",_l,j(z,J)=- L (n-v)pm/r +(D(p ).

)~O Pv=o P
(3.19)

Since (3.19) does not vanish as n -+ 00 the theorem is proved.

Remark 5. Write Hrn_1(z;f;m):=Hrn_1(z;f). As in Section2 (see
Remark 2), we have

lim H rn _ 1(z; f; m) = Ern - 1.0(Z; f)·
m~d)
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4. EXTENSIONS TO SOME BIRKHOFF PROBLEMS

A. Lacunary interpolation. For a positive integer r, let {m v }:: & be a
sequence of nonnegative integers satisfying 0= mo < ml < .,. < mr_1 and
mv ~ vn (v = 0, 1,..., r - 1). In [3] it was proven that the Hermite-Birkhoff
problem of (0, m l , ... , mr _ l ) interpolation in the nth roots of unity has a
unique solution. Let bin _ I (z; f) be this polynomial of degree rn - 1, i.e.,

drn,
-b* ('f)1 . -f(rn')(w jrn )dzmy rn - 1 Z, t = w}m - • (j=o, 1,... , n-l), (4.1 )

for v= 0, 1,..., r - 1. Note that if m v = v, v = 0, 1,..., r - 1, then this definition
reduces to (3.1). Next, let Bin-l.o(z; f) denote the sum of the first rn terms
of the Taylor series expansion for f and define Bin _ I)Z; f), j = 1, 2,..., using
(3.3) by replacing brn_l(z; gv,j) with bin_I(Z; gv) there. Define the
averages Hin -I(Z; f) and Hin_ dz;f) in an analogous manner using (3.4).
We now state the following modified version of Theorem 3.

THEOREM 4. Let f E A p and let I and f3 be as in Theorem 1. Then the
result of Theorem 3 remains valid with Hrn _1(z; f) and Hrn - l.j(z; f)
replaced by Hin -I (z; f) and Hin _ dz; f) (j =0, 1,... , I), respectively.

The proof of Theorem 4 is similar to that of Theorem 3. The only major
modification is that of replacing J r _ I (j) (see Lemma 2) by a sum involving
determinants as was done in [3].

B. Two-periodic lacunary interpolation. Let rl and r2be positive integers
and let O=mo<m l < ... <mr\-I and O~mo< '" <mr2 - 1 be two sequen
ces of integers. Write r ='1 +'2 and require that m~ ~ vn, v = 0, 1,..., r - 1
where °= m~ ~ m'[ < ... < m~_1 is the set {m,} u {m v } arranged in
increasing order. In this subsection, we will use w := exp(nilmn) where, as
before, m and n are positive integers. Let Sq= {w 2jrn

+ q} 'i: 6for q =0, 1,...,
2m - 1. Let brn _1(z; f) be the 2-periodic lacunary polynomial interpolant
which satisfies (see [10, Sect. 5])

VZE SO and v=0,1"""1 -1,

(4.2)

If Z E Sm and v = 0, 1,..., r 2 - 1.

Next, let Brn-I,o(z;f) and Brn-I)z;f),j= 1, 2, ..., be defined by using (3.3)
with brn_1(z; gv,;} replaced by brn1(z; gv) when appropriate,
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Finally, define the averages

1 m-I
Hrn_l(z;f):= - L: brn_l(zw-q;fq)

m q=O

1 m-I
Hrn-1,;{z;f):= m L Brn_l,;{zw-q;fq),

q=O

j=O,I, ...,

149

(4.3 )

where we have again used the notation f/z) = f(zw q
). Note that

brn -I (zw - q;fq) is the unique 2-periodic lacunary interpolant of (0, mh""

mq_d interpolation on Sqand (m o, ml,'''' mr2 -d interpolation on Sm+qfor
q = 0, 1,..., m - 1. Using an argument similar to that given for Theorem 3 of
Section 3 and the results of [10, Sect. 5J, one can verify the following
extension of Theorem 1 in [10].

THEOREM 5. Let fE A p and I and P as in Theorem 1. Using the above
notation, we have

Vlzl<pl+{3m/r, (4.4)

the convergence being uniform and geometric for all Izi ~ Z < pi + {3m/r.
Moreover, the result (4.4) is best possible.

Actually, we can obtain a different result along these lines using an idea
similar to the averages used in Rivlin [7J for interpolation on the

Tchebycheff nodes and extrema. Let brn_l(z;f) be defined by (4.2) upon

interchanging the roles of So and Sm there. (Note that [;rn-I(z;f) ==

brn_1(zw -m;fm).) Next, define new averages kn-I(z;f) and kn-I.;(z;f),
j = 0, 1,... , using (4.3) with the obvious modifications. If we let ~rn _ I (z; f)

(Rrn-1.;(z;f)) denote the average of Hrn_l(z;f) and Hrn-1(z;f)

(Hrn-1,;{z;f) and Hrn_l,;{z;f)), then Theorem 5 is valid for these averages
if the radius of overconvergence is replaced by pi + 2fJm/r

•

C. Mixed Hermite interpolation. Consideration of [10, Sect. 6J suggests
that we consider extensions of Theorem 3 using mixed Hermite inter
polation. Such extensions analogous to Theorem 5 are easily seen to hold.
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