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1. INTRODUCTION

Let 4, denote the set of functions analytic in |z| <p but not on |z| =p
(l<p<oo)andlet L,_,(z; f) denote the Lagrange polynomial interpolant
of f(z)e A, in the nth roots of unity. If f(z) has the Taylor series expansion

f(2)=3% ya,z", set

n—1

P, afzf):=Y a,,,2, j=01.. (L.1)
v=0

Then we have the following generalization [2] of a beautiful result due to
J. L. Walsh [127:

THEOREM A. For fe A,, and any nonnegative integer I, we have

lim {Lm(z;f)—zla,1,,-(z;f)}=o, Vizl<p't?  (12)

nm e i=0

the convergence being uniform and geometric for all \z|<Z<p'*%
Moreover, (1.2) is best possible in the sense that it is not valid at each point
of |zl =p'*? for all fe A,.

Recently, many generalizations of this theorem and other related results
have appeared in the literature [1, 2, 5-7]. In what follows, we extend
some of the results of [2] including a recently proven conjecture of theirs

[107.
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More specifically, let m and »n be positive integers and let w=
exp(2ni/mn). Set f,(z) = f(zw?), ¢=0, 1,.., m—1, and define the averages

Ay i(z:f) = 2 L, iz % f,) (1.3)

1
m
and

An i fzf) = i Po iz %S j=01..  (14)

1
m,
From (1.1), it is easy to see that

P, 1 {z1) if j=sm,s=01,.,
0, otherwise.

n lj(zf)

We note that for 0<g<m—1, L,_(z0 % f)].comia=fl0™)=
flw™*9),j=0,1,.,n—1,s0 that L, ,(zw ~% f,) may be considered as the
Lagrange interpolant of f in the nodes {w™*7}"Z;.

Our main result is

THEOREM 1. Let f€ A, and [ be a nonnegative integer. Let f§ be the least
positive integer such that fm> 1. Then

Z‘l:An~l,j(Z;f)}=0’ izl <p'*Pm (L5)

j=0

lim {Anul(z;f)a

the convergence being uniform and geometric for all |zZ|<Z<p'*P™.
Moreover, the result (1.5) is best possible.

Note that if m=/=1, then Theorem 1 reduces to Walsh’s original result.
If m=1 (I=0), then Theorem 1 yields Theorem 1 in [2].

In Section 2, we prove Theorem 1 and indicate related results. Section 3
is devoted to Hermite interpolation in the roots of unity. The results of this
section indicate how those in [2, Sects.3,4] and [10, Sects. 1-4] are
related. In the final section, some corresponding results for lacunary,
2-periodic lacunary, and general Hermite interpolation are outlined.

2. AVERAGE OF LAGRANGE INTERPOLANTS

Proof of Theorem 1. Let I' be any circle |w] = R with 1 < R< p. It can
be directly verified that

S ~2")

L, \(z;f)= ijrmdw 2.1
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and
P,z f)—sz %f—”);dw, j=0,1,... (22)
Consequently,
d 1
Loz /)= X P /) =50 | o) kw2 dw (23)
where
k(w, z) 1= ((w —Z z - (24)
Therefore,
!
L, y(z0"%f)= Y P, (200 fq)_é—j (W) k(w, z~7) dw
j=0
1

=2—n—ij (1) 0 k(tw 9,z 7) dt

2.5)

where we used the change of variable = ww? In view of (1.3) and (1.4),
the difference in (1.5) is given by

A& 3 A 5N =5a] JOkGDE  (6)

Jj=0
where
1
m

ky(t, z) = i 4kt 9, 200 %), 2.7)

With the help of (2.4), we see that
z" ®© 1 m= 1 i
kit 2)= (’ ) Yot ( ¥ w"’"). (2.8)
"t i m .o

The last sum in (2.8) is zero unless j=sm (>1), s=§, f + 1,.... Thus,

e )= L

29
(" ——z”) (29)

= (t—Z)(lm"— 1) t(B~1)mn+n'




EXTENSIONS OF WALSH’S THEOREM 143

In order to bound the integral in (2.6), choose M so that | f(¢)] <M on
I'. Then for all |z| < u (1= p), we have from (2.6) and (2.9)

MR(R" + ")
(k= RY(R™ 1) R~ 7

!
An—l(Z;f)—lZ A,z )| < (2.10)

The desired uniform and geometric convergence of (1.5) follows easily from
(2.10) by using techniques similar to those in [2, p. 158].

To see that this is best possible, consider the special function f(z):=
(p—z) 'eA,. It can be verified by direct computation that

pn_zn
p_z)(pmn_ l)p(ﬂfl)mn+n’

An——l(z;f)_ Z Angl,j(z;])=(
j=0

If we set z=p'!*#" this last expression tends to (p'*#"—p)~'>0 as
n — 0. This completes the proof.

Remark 1. In [7] Rivlin obtained a result similar to Theorem 1 by
using the least-squares approximation of degree n—1 to f on the
(mn + d)th roots of unity (d>0). If /=0 in (1.5) above, Theorem 1 reduces
to Rivlin’s result for the special case d=0. (Actually, a more general
averaging technique can be used to obtain Rivlin’s result for 4> 0. These
methods along with some comments on the sharpness of this overcon-
vergence (see [9]) will appear in a future paper.) To see this, note that if
y=pn+v,0<v<n—1, then L,_,(z;z")=2". Thus

L@ )=3 S amns @11)

p=0v=0

or, since f,(z) =37 o(a,w?) 2*,
o n—1
Ln-l(zw»‘q;fq): Z w~;4qn Z aun+v2v'
u=0 v=0

Upon averaging, we have

o n—1

Ayi(z:f)= Z Z aumn+vzv-

u=0v=0

Consideration of (2.11) indicates that A,_(z;f) is the polynomial
L,.._1(z; f) truncated to a polynomial of degree n— 1. That is, 4,,_,(z; )
is the least-squares approximation of degree n —1 to f on the (mn)th roots
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of unity (see [7]). Also, from (1.1) it is clear that 4, _,o(z; f)=P,_(z; f).
Thus, for /=0, (1.5) reduces to

im {4, (zf)—P, (z/)}=0, V]zl<p'*™  (212)

This is the result mentioned above.

Remark 2. If we allow m to vary and replace A4,_,(z;f) by
A, _ \(z; f; m) to indicate the dependence on m, we have from (2.12)
lim Anfl(Z;f;m)=Pn—-l(Z;f)-

m—- 0

This suggests that, in general, the average polynomial 4, _,(z; f) is an
appropriate “near-best” approximation to f(z) (see [4]). Results related to
this observation will appear in a separate paper.

Let C(D,) denote the functions continuous in D, = {|z| <p}. We con-
clude this section with the statement of

THEOREM 2. Let f(z)e A,nC(D,) and let p and I be as in Theorem 1.
Then

/
lim {An_l(z;ﬂ— An;l,,(z;f)}=o, V12l <pt o,
n— oC =0

J

the convergence being uniform and geometric for all |z| < Z < p' ",

3. HERMITE INTERPOLATION

In this section, we extend Theorem 1 stated above to the case of Hermite
interpolation in the roots of unity. For r a nonnegative integer let
b.._1(z; f) be the unique polynomial which interpolates to fe 4, and its
first {r — 1) derivatives in the nth roots of unity. That is,

d

EbrnfI(Z;f)|z=wj”'=f(V)(wjm)a ]=01 17"-7 n— 1’ (31)

forv=0,1,.,r—1.

LemMa 1. Fix 0<qg<m—1. The polynomial b,, (zw ™% f,) has the
property that

4
brn— l(zw *q; fq)lz:w/’""“’ =f(V)(Z) |z=wj”““7 (3'2)

dz*

Jor j=0,1,..,n—1and v=0,1,.,r—1.
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The proof of Lemma 1 follows immediately from (3.1).

Remark 3. Evidently, the polynomial on the left of (3.2) is the unique
polynomial interpolant of f and its first (r— 1) derivatives in the points

{wra}n_g.
Now define

Brn-l,O(Z;f‘):= z avzv

T (33)
Brn~l,j(z;f):= Z av+(r+j71)nbrn»1(2; gv,j)s J=19 2’"-9
v=0
where g, (z) := z"**/= 1" Finally, define the averages
| m=
Hrn—l(Z;f):z.’; Z m— l(zwiq;fq)
i ‘_ (3.4)
rn ljzf) =E Z rn— l,j(zw—q;fq), 1:09 1’

We shall now prove
THEOREM 3. Let fe A, and let | and B be as in Theorem 1. Then

14
lim {H,,,-l(z;f)—z H,,,_l,j(z;f)}=o, Vil <ptm, (35)

j=0

the convergence being uniform and geometric for all |z| KZ<p!'*Pm",

Moreover, the result (3.5) is best possible.

Remark 4. Theorem 3 generalizes Theorem 1 of the previous section in
the sense that it reduces to the latter in the case r=1. If m =1, Theorem 3
reduces to Theorem 3 of [21.

For the proof of Theorem 3, we will need the following lemma.

LeMMmA 2. For j=r—1,r—2,., we have

r—1
bn_1(z; gO,j——r+l)= Z AA(]')ZM (3.6)
i=0

- T e (L)

where
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Proof. From [2, Egs. (3.4) and (4.4)] there follows

r+j— n
b (5 8) =tz z0) =2 2 (T -1 09
0<v<n—1,j=0,1,... Equation (3.6) follows directly from (3.7).
Proof of Theorem 3. 1In [2,p. 165] it was shown that

! 1
b @S} = L B 1 feif) =50 | SO0 Kmz) e (38)

where

n

K(W, Z):= w'—z z bm—l(z;‘g(),jfr+1). (39)

_ (j+1)n
w—2z Jel4r w

(Here, we have again used I" to denote any circle |[w|=R, 1<R<p.)
Using Lemma 2, we see that

noorlA

K(w,2) =" - X Y WUH)” . (3.10)
J=I+ra
Appealing to (3.8) we find
/
brn 1 Z rm— 1] ‘q;fq)
1 _ - _
=§—,j (1) o~ K(tw ™%, zo» ) dt. (3.11)
mir
Letting
Kot 2y = —L 2 gy (LY wmu-n) (3a2)
T 1=y U A m =,

and with the help of (3.4) and (3.11), we see that the difference in (3.5) is
given by

Ho )= %, Hoo (23 = (0 AR Y ERE)
where

Kt 2):= Z Z KU, 2). (3.14)

A=0j=14r
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From (3.12), we see that KY*(¢,z)=0 unless j— A=sm, s=u,, u, + 1,...,
where

“”i“ A it mdivides (r 41— 2),

= (3.15)

[r Rl /1] +1, otherwise.
m

(Definition (3.15) follows from the fact that sm>=r+/— A.) This together
with (3.12) and (3.14) yields

r—1 o
K(t2)= Y ¥ K“m9(,2)

=l (3.16)
(tn n rzl i An
A,(A+sm) -
(1=2) [ Zosy gt
Since u; = f for A=0, 1,..,r— 1, we have for |z] >p and |t| =R
Kt 2) <=0 a 3.17)
(’Z)I\R(r+[3m)n ( .

where M is a constant that does not depend on ». This last inequality can
be used to establish (3.5).

To see that (3.5) is best possible, consider again the special function
F(z)=(p—z) ' Using (3.1)-(3.4), it can be verified directly that

H, (z])= Y Hu_1/z])

j=0
r—=1 o n-1 Zv+zn
=) X 2 A (A +sm) s (3.18)
A=0s=p; v=0 p

Using Lemma 2 in [2] and recalling that u; > B, we have for z = p!+fm/r

17244, (r—14 Bm) o
H, (257 ZH,,. i) =5 T LG B s ol

v=0

(3.19)

Since (3.19) does not vanish as n — oo the theorem is proved.

Remark 5. Write H,,_(z;f;m)=H,,_(z;f). As in Section2 (see
Remark 2), we have

mlimoo Hrn- I(Z; f’ m) = Brn~ l,O(Z; f)
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4. EXTENSIONS TO SOME BIRKHOFF PROBLEMS

A. Lacunary interpolation. For a positive integer r, let {m jrzl bea
sequence of nonnegative integers satisfying 0 =my<m,; < -+ <m,_, and
m,<vn (v=0, 1,..,r—1). In [3] it was proven that the Hermite-Birkhoff
problem of (0, m,,.., m,_) interpolation in the nth roots of unity has a
untque solution. Let b* _,(z; ) be this polynomial of degree rn—1, ie.,

am ,
d my b::n‘l(z;f)|z=wf”'=f(m")(wjm) . (.]=0’ 1:"" n— 1)a (41)

forv=0,1,.,r—1. Note that if m,=v, v=0, 1., r — 1, then this definition
reduces to (3.1). Next, let BY _, o(z; f) denote the sum of the first rn terms
of the Taylor series expansion for f and define BY, | (z; f),j=1, 2,..., using
(3.3) by replacmg b 1(z; 8,;) with b} _(z;g,;) there. Define the
averages HY _,(z; f)and HY, _, /(z; ) in an analogous manner using (3.4).
We now state the following modified version of Theorem 3.

THEOREM 4. Let fe A, and let | and B be as in Theorem 1. Then the
result of Theorem3 remains valid with H,, |(z;f) and H,, | (z; f)
replaced by H}, \(z; f)and H}, | [z, ) (j=0, 1,.., ), respectively.

The proof of Theorem 4 is similar to that of Theorem 3. The only major
modification is that of replacing 4, _ (/) (see Lemma 2) by a sum involving
determinants as was done in [3].

B. Two-periodic lacunary interpolation. Let r, and r, be positive integers
andletO=mo<m, < -~ <m, ,and 0<my< -~ <m,, ; be two sequen-
ces of integers. Write r =r, +r, and require that m,<vn, v=0,1,.,r—1
where O=mo<m|< -~ <m,_, is the set {m,}u {m,} arranged in
increasing order. In this subsection, we will use w := exp(ni/mn) where, as
before, m and n are positive integers. Let S, = {w*"*}7_ for g=0, 1,..,
2m—1. Let b,, ,(z; f) be the 2-periodic lacunary polynomial interpolant
which satisfies (see [10, Sect. 51)

dm v
dz"™

Iy

d—”’Em‘ Az N)y=f)(z), VzeS,andv=0,1,.,7r,—1.
s

b (2 )=f"z), VzeS,andv=0,1,. r —1,
(4.2)

Next, let B,,_,o(z; f) and B,, _1.A25f), j=1,2,.., be defined by using (3.3)
with b,,_,(z; g,;) replaced by b,, ,(z; g, ;) when appropriate.



EXTENSIONS OF WALSH’S THEOREM 149

Finally, define the averages

lmvl
rn~1(z f) = Z brn—-l(zw qfq
(43)

Vl*lj(z f :;L_ Z n—lj(zw fq J:()s 1,...,

where we have again used the notation f (z)=f(zw?). Note that
b, (z0~ 7 ; f,) 1s the unique 2-periodic lacunary interpolant of (0, m,,...,
m,, _,) interpolation on S, and (%, /..., M,,_ ) interpolation on S,,, , , for

q=0,1,.,m— 1. Using an argument similar to that given for Theorem 3 of

Section 3 and the results of [10, Sect. 5], one can verify the following

extension of Theorem 1 in [10].

THEOREM 5. Let fe A, and | and B as in Theorem 1. Using the above
notation, we have

li
hm {Flmvl(Z;f)_ Z Hrnl,j(Z;f)}zo’ v |Z‘ <pl+[3m/r, (44)

n— 0 —

the convergence being uniform and geometric for all |z| <Z <p'*Fmr.

Moreover, the result (4.4) is best possible.

Actually, we can obtain a different result along these lines using an idea
similar to the averages used in Rivlin [7] for interpolation on the

Tchebycheff nodes and extrema. Let g,,,# (z; f) be defined by {(4.2) upon
interchanging the roles of S, and S,, there. (Note that ~,,,, Wz )=
b,,_ (zw~"™; f,,).) Next, define new averages H,,,, (z; f) and H,,,,lj(z ),
j=0,1,..., using (4.3) with the obvious modifications. If we let R,,,_(z; f)
(R,, 1z f)) denote the average of H, (zf) and le,,,, (z: )
(H,,_i /z f)and I?(,,,, 1.,(2; f)), then Theorem 5 is valid for these averages
if the radius of overconvergence is replaced by p'* 2",

C. Mixed Hermite interpolation. Consideration of [ 10, Sect. 6] suggests
that we consider extensions of Theorem 3 using mixed Hermite inter-
polation. Such extensions analogous to Theorem 5 are easily seen to hold.
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