Extensions of a Theorem of J. L. Walsh

Thomas E. Price, Jr.*
Department of Mathematical Sciences, The University of Akron, Akron, Ohio 44325, U.S.A.
Communicated by T. J. Rivlin

Received January 3, 1983; revised May 2, 1984

1. Introduction

Let A_{ρ} denote the set of functions analytic in $|z|<\rho$ but not on $|z|=\rho$ $(1<\rho<\infty)$ and let $L_{n-1}(z ; f)$ denote the Lagrange polynomial interpolant of $f(z) \in A_{\rho}$ in the nth roots of unity. If $f(z)$ has the Taylor series expansion $f(z)=\sum_{v=0}^{\infty} a_{v} z^{v}$, set

$$
\begin{equation*}
P_{n-1, j}(z ; f):=\sum_{v=0}^{n-1} a_{j n+v} z^{v}, \quad j=0,1, \ldots . \tag{1.1}
\end{equation*}
$$

Then we have the following generalization [2] of a beautiful result due to J. L. Walsh [12]:

Theorem A. For $f \in A_{\rho}$, and any nonnegative integer l, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{L_{n-1}(z ; f)-\sum_{j=0}^{l} P_{n-1 . j}(z ; f)\right\}=0, \quad \forall|z|<\rho^{\prime+2} \tag{1.2}
\end{equation*}
$$

the convergence being uniform and geometric for all $|z| \leqslant Z<\rho^{I+2}$. Moreover, (1.2) is best possible in the sense that it is not valid at each point of $|z|=\rho^{i+2}$ for all $f \in A_{\rho}$.

Recently, many generalizations of this theorem and other related results have appeared in the literature [1, 2, 5-7]. In what follows, we extend some of the results of [2] including a recently proven conjecture of theirs [10].

[^0]More specifically, let m and n be positive integers and let $\omega=$ $\exp (2 \pi i / m n)$. Set $f_{q}(z)=f\left(z \omega^{q}\right), q=0,1, \ldots, m-1$, and define the averages

$$
\begin{equation*}
A_{n-1}(z ; f):=\frac{1}{m} \sum_{q=0}^{m-1} L_{n-1}\left(z \omega^{-q} ; f_{q}\right) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n-1, j}(z ; f):=\frac{1}{m} \sum_{q=0}^{m-1} P_{n-1, j}\left(z \omega^{-q} ; f_{q}\right), \quad j=0,1, \ldots . \tag{1.4}
\end{equation*}
$$

From (1.1), it is easy to see that

$$
A_{n-1 . j}(z ; f)= \begin{cases}P_{n-1 . j}(z ; f) & \text { if } j=s m, s=0,1, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

We note that for $0 \leqslant q \leqslant m-1,\left.\quad L_{n-1}\left(z \omega^{-q} ; f_{q}\right)\right|_{z=\omega^{j m+q}}=f_{q}\left(\omega^{j m}\right)=$ $f\left(\omega^{j m+q}\right), j=0,1, \ldots, n-1$, so that $L_{n-1}\left(z \omega^{-q} ; f_{q}\right)$ may be considered as the Lagrange interpolant of f in the nodes $\left\{\omega^{j m+q}\right\}_{j=0}^{n-1}$.
Our main result is
Theorem 1. Let $f \in A_{\rho}$ and l be a nonnegative integer. Let β be the least positive integer such that $\beta m>1$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{A_{n-1}(z ; f)-\sum_{j=0}^{1} A_{n-1, j}(z ; f)\right\}=0, \quad \forall|z|<\rho^{1+\beta m}, \tag{1.5}
\end{equation*}
$$

the convergence being uniform and geometric for all $|z| \leqslant Z<\rho^{1+\beta m}$. Moreover, the result (1.5) is best possible.

Note that if $m=l=1$, then Theorem 1 reduces to Walsh's original result. If $m=1(l \geqslant 0)$, then Theorem 1 yields Theorem 1 in [2].

In Section 2, we prove Theorem 1 and indicate related results. Section 3 is devoted to Hermite interpolation in the roots of unity. The results of this section indicate how those in [2, Sects. 3, 4] and [10, Sects. 1-4] are related. In the final section, some corresponding results for lacunary, 2-periodic lacunary, and general Hermite interpolation are outlined.

2. Average of Lagrange Interpolants

Proof of Theorem 1. Let Γ be any circle $|w|=R$ with $1<R<p$. It can be directly verified that

$$
\begin{equation*}
L_{n-1}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(w)\left(w^{n}-z^{n}\right)}{(w-z)\left(w^{n}-1\right)} d w \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n-1, j}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(w)\left(w^{n}-z^{n}\right)}{(w-z) w^{(j+1) n}} d w, \quad j=0,1, \ldots \tag{2.2}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
L_{n-1}(z ; f)-\sum_{j=0}^{l} P_{n-1, j}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma} f(w) k(w, z) d w \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
k(w, z):=\frac{\left(w^{n}-z^{n}\right)}{(w-z) w^{n}} \sum_{j=l+1}^{\infty} w^{-j n} \tag{2.4}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
L_{n-1}\left(z \omega^{-q} ; f_{q}\right)-\sum_{j=0}^{l} P_{n-1}\left(z \omega^{-q} ; f_{q}\right) & =\frac{1}{2 \pi i} \int_{\Gamma} f_{q}(w) k\left(w, z \omega^{-q}\right) d w \\
& =\frac{1}{2 \pi i} \int_{\Gamma} f(t) \omega^{-q} k\left(t \omega^{-q}, z \omega^{-q}\right) d t \tag{2.5}
\end{align*}
$$

where we used the change of variable $t=w \omega^{q}$. In view of (1.3) and (1.4), the difference in (1.5) is given by

$$
\begin{equation*}
A_{n-1}(z ; f)-\sum_{j=0}^{l} A_{n-1, j}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma} f(t) k_{1}(t, z) d t \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{1}(t, z)=\frac{1}{m} \sum_{q=0}^{m-1} \omega^{-q} k\left(t \omega^{-q}, z \omega^{-q}\right) . \tag{2.7}
\end{equation*}
$$

With the help of (2.4), we see that

$$
\begin{equation*}
k_{1}(t, z)=\frac{\left(t^{n}-z^{n}\right)}{(t-z) t^{n}} \sum_{j=l+1}^{\infty} t^{-j n}\left(\frac{1}{m} \sum_{q=0}^{m-1} \omega^{j q n}\right) \tag{2.8}
\end{equation*}
$$

The last sum in (2.8) is zero unless $j=s m(>l), s=\beta, \beta+1, \ldots$. Thus,

$$
\begin{align*}
k_{1}(t, z) & =\frac{\left(t^{n}-z^{n}\right)}{(t-z) t^{n}} \sum_{s=\beta}^{\infty} t^{-s m n} \tag{2.9}\\
& =\frac{\left(t^{n}-z^{n}\right)}{(t-z)\left(t^{m n}-1\right) t^{(\beta-1) m n+n}}
\end{align*}
$$

In order to bound the integral in (2.6), choose M so that $|f(t)| \leqslant M$ on Γ. Then for all $|z| \leqslant \mu(\mu \geqslant \rho)$, we have from (2.6) and (2.9)

$$
\begin{equation*}
\left|A_{n-1}(z ; f)-\sum_{j=0}^{l} A_{n-1, j}(z ; f)\right| \leqslant \frac{M R\left(R^{n}+\mu^{n}\right)}{(\mu-R)\left(R^{m n}-1\right) R^{(\beta-1) m n+n}} \tag{2.10}
\end{equation*}
$$

The desired uniform and geometric convergence of (1.5) follows easily from (2.10) by using techniques similar to those in [2, p. 158].

To see that this is best possible, consider the special function $\hat{f}(z):=$ $(\rho-z)^{-1} \in A_{\rho}$. It can be verified by direct computation that

$$
A_{n-1}(z ; \hat{f})-\sum_{j=0}^{l} A_{n-1, j}(z ; \hat{f})=\frac{\rho^{n}-z^{n}}{(\rho-z)\left(\rho^{m n}-1\right) \rho^{(\beta-1) m n+n}}
$$

If we set $z=\rho^{1+\beta m}$ this last expression tends to $\left(\rho^{1+\beta m}-\rho\right)^{-1}>0$ as $n \rightarrow \infty$. This completes the proof.

Remark 1. In [7] Rivlin obtained a result similar to Theorem 1 by using the least-squares approximation of degree $n-1$ to f on the $(m n+d)$ th roots of unity $(d \geqslant 0)$. If $l=0$ in (1.5) above, Theorem 1 reduces to Rivlin's result for the special case $d=0$. (Actually, a more general averaging technique can be used to obtain Rivlin's result for $d \geqslant 0$. These methods along with some comments on the sharpness of this overconvergence (see [9]) will appear in a future paper.) To see this, note that if $\gamma=\mu n+v, 0 \leqslant v \leqslant n-1$, then $L_{n-1}\left(z ; z^{\nu}\right)=z^{\nu}$. Thus

$$
\begin{equation*}
L_{n-1}(z ; f)=\sum_{\mu=0}^{\infty} \sum_{v=0}^{n-1} a_{\mu n+v} z^{v} \tag{2.11}
\end{equation*}
$$

or, since $f_{q}(z)=\sum_{v=0}^{\infty}\left(a_{v} \omega^{q v}\right) z^{v}$,

$$
L_{n-1}\left(z \omega^{-q} ; f_{q}\right)=\sum_{\mu=0}^{\infty} \omega^{-\mu q n} \sum_{v=0}^{n-1} a_{\mu n+v} z^{v}
$$

Upon averaging, we have

$$
A_{n-1}(z ; f)=\sum_{\mu=0}^{\infty} \sum_{\nu=0}^{n-1} a_{\mu m n+\nu} z^{\nu}
$$

Consideration of (2.11) indicates that $A_{n-1}(z ; f)$ is the polynomial $L_{m n-1}(z ; f)$ truncated to a polynomial of degree $n-1$. That is, $A_{n-1}(z ; f)$ is the least-squares approximation of degree $n-1$ to f on the ($m n$)th roots
of unity (see [7]). Also, from (1.1) it is clear that $A_{n-1,0}(z ; f) \equiv P_{n-1}(z ; f)$. Thus, for $l=0$, (1.5) reduces to

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{A_{n-1}(z ; f)-P_{n-1}(z ; f)\right\}=0, \quad \forall|z|<\rho^{1+m} \tag{2.12}
\end{equation*}
$$

This is the result mentioned above.
Remark 2. If we allow m to vary and replace $A_{n-1}(z ; f)$ by $A_{n-1}(z ; f ; m)$ to indicate the dependence on m, we have from (2.12)

$$
\lim _{m \rightarrow \infty} A_{n-1}(z ; f ; m)=P_{n-, 1}(z ; f)
$$

This suggests that, in general, the average polynomial $A_{n-1}(z ; f)$ is an appropriate "near-best" approximation to $f(z)$ (see [4]). Results related to this observation will appear in a separate paper.

Let $C\left(D_{\rho}\right)$ denote the functions continuous in $D_{\rho}=\{|z| \leqslant \rho\}$. We conclude this section with the statement of

Theorem 2. Let $f(z) \in A_{\rho} \cap C\left(D_{\rho}\right)$ and let β and l be as in Theorem 1. Then

$$
\lim _{n \rightarrow \infty}\left\{A_{n-1}(z ; f)-\sum_{j=0}^{l} A_{n-1, j}(z ; f)\right\}=0, \quad \forall|z| \leqslant \rho^{1+\beta m},
$$

the convergence being uniform and geometric for all $|z| \leqslant Z<\rho^{1+\beta m}$.

3. Hermite Interpolation

In this section, we extend Theorem 1 stated above to the case of Hermite interpolation in the roots of unity. For r a nonnegative integer let $b_{r n-1}(z ; f)$ be the unique polynomial which interpolates to $f \in A_{\rho}$ and its first $(r-1)$ derivatives in the nth roots of unity. That is,

$$
\begin{equation*}
\left.\frac{d^{v}}{d z^{v}} b_{r n-1}(z ; f)\right|_{z=\omega^{j m}}=f^{(v)}\left(\omega^{j m}\right), \quad j=0,1, \ldots, n-1 \tag{3.1}
\end{equation*}
$$

for $v=0,1, \ldots, r-1$.
Lemma 1. Fix $0 \leqslant q \leqslant m-1$. The polynomial $b_{r n-1}\left(z \omega^{-q} ; f_{q}\right)$ has the property that

$$
\begin{equation*}
\left.\frac{d^{v}}{d z^{v}} b_{r n-1}\left(z \omega^{-q} ; f_{q}\right)\right|_{z=\omega^{j m+q}}=\left.f^{(v)}(z)\right|_{z=\omega^{j m+q}} \tag{3.2}
\end{equation*}
$$

for $j=0,1, \ldots, n-1$ and $v=0,1, \ldots, r-1$.

The proof of Lemma 1 follows immediately from (3.1).
Remark 3. Evidently, the polynomial on the left of (3.2) is the unique polynomial interpolant of f and its first $(r-1)$ derivatives in the points $\left\{\omega^{j n+q}\right\}_{j=0}^{n-1}$.

Now define

$$
\begin{align*}
& B_{r n-1,0}(z ; f):=\sum_{v=0}^{r n-1} a_{v} z^{v} \\
& B_{r n-1, j}(z ; f):=\sum_{v=0}^{n-1} a_{v+(r+j-1) n} b_{r n-1}\left(z ; g_{v, j}\right), \quad j=1,2, \ldots, \tag{3.3}
\end{align*}
$$

where $g_{v, j}(z):=z^{\nu+(r+j-1) n}$. Finally, define the averages

$$
\begin{align*}
& H_{r n-1}(z ; f):=\frac{1}{m} \sum_{q=0}^{m-1} b_{r n-1}\left(z \omega^{-q} ; f_{q}\right) \tag{3.4}\\
& H_{r n-1, j}(z ; f):=\frac{1}{m} \sum_{q=0}^{m-1} B_{r n-1, j}\left(z \omega^{-q} ; f_{q}\right), \quad j=0,1, \ldots
\end{align*}
$$

We shall now prove

Theorem 3. Let $f \in A_{\rho}$ and let l and β be as in Theorem 1. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{H_{r n-1}(z ; f)-\sum_{j=0}^{l} H_{r n-1, j}(z ; f)\right\}=0, \quad \forall|z|<\rho^{1+\beta m / r} \tag{3.5}
\end{equation*}
$$

the convergence being uniform and geometric for all $|z| \leqslant Z<\rho^{1+\beta m / r}$. Moreover, the result (3.5) is best possible.

Remark 4. Theorem 3 generalizes Theorem 1 of the previous section in the sense that it reduces to the latter in the case $r=1$. If $m=1$, Theorem 3 reduces to Theorem 3 of [2].

For the proof of Theorem 3, we will need the following lemma.
Lemma 2. For $j=r-1, r-2, \ldots$, we have

$$
\begin{equation*}
b_{r n-1}\left(z ; g_{0, j-r+1}\right)=\sum_{\lambda=0}^{r-1} \Delta_{\lambda}(j) z^{\lambda n} \tag{3.6}
\end{equation*}
$$

where

$$
\Delta_{\lambda}(j):=\sum_{\mu=\lambda}^{r-1}(-1)^{\mu-\lambda}\binom{j}{\mu}\binom{\mu}{\mu-\lambda}
$$

Proof. From [2, Eqs. (3.4) and (4.4)] there follows

$$
\begin{equation*}
b_{r n-1}\left(z ; g_{v, j}\right)=z^{v} b_{r n-1}\left(z ; g_{0, j}\right)=z^{v} \sum_{\lambda=0}^{r-1}\binom{r+j-1}{\lambda}\left(z^{n}-1\right)^{\lambda} \tag{3.7}
\end{equation*}
$$

$0 \leqslant v \leqslant n-1, j=0,1, \ldots$. Equation (3.6) follows directly from (3.7).
Proof of Theorem 3. In [2, p. 165] it was shown that

$$
\begin{equation*}
b_{r n-1}(z ; f)-\sum_{j=0}^{l} B_{r n-1, j}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma} f(w) K(w, z) d w \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
K(w, z):=\frac{w^{n}-z^{n}}{w-z} \sum_{j=l+r}^{\infty} \frac{b_{r n-1}\left(z ; g_{0, j-r+1}\right)}{w^{(j+1) n}} \tag{3.9}
\end{equation*}
$$

(Here, we have again used Γ to denote any circle $|w|=R, 1<R<\rho$.) Using Lemma 2, we see that

$$
\begin{equation*}
K(w, z)=\frac{w^{n}-z^{n}}{w-z} \sum_{j=l+r}^{\infty} \sum_{\lambda=0}^{r-1} \frac{\Delta_{\lambda}(j) z^{\lambda n}}{w^{(j+1) n}} \tag{3.10}
\end{equation*}
$$

Appealing to (3.8) we find

$$
\begin{align*}
& b_{r n-1}\left(z \omega^{-q} ; f_{q}\right)-\sum_{j=0}^{l} B_{r n-1, j}\left(z \omega^{-q} ; f_{q}\right) \\
& \quad=\frac{1}{2 \pi i} \int_{\Gamma} f(t) \omega^{-q} K\left(t \omega^{-q}, z \omega^{-q}\right) d t . \tag{3.11}
\end{align*}
$$

Letting

$$
\begin{equation*}
K^{(j, \lambda)}(t, z):=\frac{t^{n}-z^{n}}{(t-z) t^{(j+1) n}} \Lambda_{\lambda}(j) z^{\lambda n}\left(\frac{1}{m} \sum_{q=0}^{m-1} \omega^{n q(j-\lambda)}\right) \tag{3.12}
\end{equation*}
$$

and with the help of (3.4) and (3.11), we see that the difference in (3.5) is given by

$$
\begin{equation*}
H_{r n-1}(z ; f)-\sum_{j=0}^{l} H_{r n-1, j}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma} f(t) K_{1}(t, z) d t \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{1}(t, z):=\sum_{\lambda=0}^{r-1} \sum_{j=t+r}^{\infty} K^{(j, \lambda)}(t, z) . \tag{3.14}
\end{equation*}
$$

From (3.12), we see that $K^{(j, \lambda)}(t, z) \equiv 0$ unless $j-\lambda=s m, s=\mu_{\lambda}, \mu_{\lambda}+1, \ldots$, where

$$
\mu_{\lambda}:=\left\{\begin{array}{l}
\frac{r+l-\lambda}{m}, \quad \text { if } \quad m \text { divides }(r+l-\lambda) \tag{3.15}\\
{\left[\frac{r+l-\lambda}{m}\right]+1, \quad \text { otherwise } .}
\end{array}\right.
$$

(Definition (3.15) follows from the fact that $s m \geqslant r+l-\lambda$.) This together with (3.12) and (3.14) yields

$$
\begin{align*}
K_{1}(t, z) & =\sum_{\lambda=0}^{r-1} \sum_{s=\mu_{\lambda}}^{\infty} K^{(\lambda+s m, \lambda)}(t, z) \tag{3.16}\\
& =\frac{\left(t^{n}-z^{n}\right)}{(t-z)} \sum_{\lambda=0}^{r-1} \sum_{s=\mu_{i}}^{\infty} \Delta_{\lambda}(\lambda+s m) \frac{z^{\lambda n}}{t^{(\lambda+s m) n}} .
\end{align*}
$$

Since $\mu_{\lambda} \geqslant \beta$ for $\lambda=0,1, \ldots, r-1$, we have for $|z|>\rho$ and $|t|=R$

$$
\begin{equation*}
|K(t, z)| \leqslant \frac{|z|^{r n}}{R^{(r+\beta m) n}} M \tag{3.17}
\end{equation*}
$$

where M is a constant that does not depend on n. This last inequality can be used to establish (3.5).

To see that (3.5) is best possible, consider again the special function $\hat{f}(z)=(\rho-z)^{-1}$. Using (3.1)-(3.4), it can be verified directly that

$$
\begin{align*}
& H_{r n-1}(z ; \hat{f})-\sum_{j=0}^{l} H_{r n-1, j}(z ; \hat{f}) \\
& \quad=\sum_{\lambda=0}^{r-1} \sum_{s=\mu_{i}}^{\infty} \sum_{v=0}^{n-1} \Delta_{\lambda}(\lambda+s m) \frac{z^{v+i n}}{\rho^{1+v+(\lambda+s m) n}} . \tag{3.18}
\end{align*}
$$

Using Lemma 2 in [2] and recalling that $\mu_{\lambda} \geqslant \beta$, we have for $z=\rho^{1+\beta m / r}$

$$
\begin{equation*}
H_{r n-1}(z ; \hat{f})-\sum_{j=0}^{l} H_{r n-1, j}(z ; \hat{f})=\frac{1}{\rho} \sum_{v=0}^{n-1} \frac{\Delta_{r-1}(r-1+\beta m)}{\rho^{(n-v) \beta m / r}}+\mathcal{O}\left(\rho^{-m n}\right) \tag{3.19}
\end{equation*}
$$

Since (3.19) does not vanish as $n \rightarrow \infty$ the theorem is proved.
Remark 5. Write $H_{r n-1}(z ; f ; m) \equiv H_{r n-1}(z ; f)$. As in Section 2 (see Remark 2), we have

$$
\lim _{m \rightarrow \infty} H_{r n-1}(z ; f ; m)=B_{r n-1,0}(z ; f) .
$$

4. Extensions to Some Birkhoff Problems

A. Lacunary interpolation. For a positive integer r, let $\left\{m_{v}\right\}_{v=0}^{r-\frac{1}{0}}$ be a sequence of nonnegative integers satisfying $0=m_{0}<m_{1}<\cdots<m_{r-1}$ and $m_{v} \leqslant v n(v=0,1, \ldots, r-1)$. In [3] it was proven that the Hermite-Birkhoff problem of $\left(0, m_{1}, \ldots, m_{r-1}\right)$ interpolation in the nth roots of unity has a unique solution. Let $b_{r n-1}^{*}(z ; f)$ be this polynomial of degree $r n-1$, i.e.,

$$
\begin{equation*}
\left.\frac{d^{m_{v}}}{d z^{m_{v}}} b_{r n-1}^{*}(z ; f)\right|_{z=\omega^{j m}}=f^{\left(m_{v}\right)}\left(\omega^{j m}\right) . \quad(j=0,1, \ldots, n-1) \tag{4.1}
\end{equation*}
$$

for $v=0,1, \ldots, r-1$. Note that if $m_{v}=v, v=0,1, \ldots, r-1$, then this definition reduces to (3.1). Next, let $B_{r n-1,0}^{*}(z ; f)$ denote the sum of the first $r n$ terms of the Taylor series expansion for f and define $B_{r n-1, j}^{*}(z ; f), j=1,2, \ldots$, using (3.3) by replacing $b_{r n-1}\left(z ; g_{v, j}\right)$ with $b_{r n-1}^{*}\left(z ; g_{v, j}\right)$ there. Define the averages $H_{r n-1}^{*}(z ; f)$ and $H_{r n-1, j}^{*}(z ; f)$ in an analogous manner using (3.4). We now state the following modified version of Theorem 3.

Theorem 4. Let $f \in A_{\rho}$ and let l and β be as in Theorem 1. Then the result of Theorem 3 remains valid with $H_{r n-1}(z ; f)$ and $H_{r n-1, j}(z ; f)$ replaced by $H_{r n-1}^{*}(z ; f)$ and $H_{r n-1, j}^{*}(z ; f)(j=0,1, \ldots, l)$, respectively.

The proof of Theorem 4 is similar to that of Theorem 3. The only major modification is that of replacing $A_{r-1}(j)$ (see Lemma 2) by a sum involving determinants as was done in [3].
B. Two-periodic lacunary interpolation. Let r_{1} and r_{2} be positive integers and let $0=m_{0}<m_{1}<\cdots<m_{r_{1}-1}$ and $0 \leqslant \tilde{m}_{0}<\cdots<\tilde{m}_{r_{2}-1}$ be two sequences of integers. Write $r=r_{1}+r_{2}$ and require that $m_{v}^{\prime} \leqslant v n, v=0,1, \ldots, r-1$ where $0=m_{0}^{\prime} \leqslant m_{1}^{\prime}<\cdots<m_{r-1}^{\prime}$ is the set $\left\{m_{v}\right\} \cup\left\{\tilde{m}_{v}\right\}$ arranged in increasing order. In this subsection, we will use $\omega:=\exp (\pi i / m n)$ where, as before, m and n are positive integers. Let $S_{\varphi}=\left\{\omega^{2 j m+4}\right\}_{j=0}^{n-1}$ for $q=0,1, \ldots$, $2 m-1$. Let $\tilde{b}_{r n-1}(z ; f)$ be the 2-periodic lacunary polynomial interpolant which satisfies (see [10, Sect. 5])

$$
\begin{array}{ll}
\frac{d^{m_{v}}}{d z^{m_{v}}} \tilde{b}_{r n-1}(z ; f)=f^{\left(m_{v}\right)}(z), & \forall z \in S_{0} \text { and } v=0,1, \ldots, r_{1}-1, \\
\frac{d^{m_{v}}}{d z^{\tilde{m}_{v}}} \tilde{b}_{r n-1}(z ; f)=f^{\left(\tilde{m}_{v}\right)}(z), \quad \forall z \in S_{m} \text { and } v=0,1, \ldots, r_{2}-1 . \tag{4.2}
\end{array}
$$

Next, let $\widetilde{B}_{r n-1,0}(z ; f)$ and $\widetilde{B}_{r n-1, j}(z ; f), j=1,2, \ldots$, be defined by using (3.3) with $b_{r n-1}\left(z ; g_{v, j}\right)$ replaced by $\tilde{b}_{r n-1}\left(z ; g_{v, j}\right)$ when appropriate.

Finally, define the averages

$$
\begin{align*}
& \tilde{H}_{r n-1}(z ; f):=\frac{1}{m} \sum_{q=0}^{m-1} \tilde{b}_{r n-1}\left(z \omega^{-q} ; f_{q}\right) \\
& \tilde{H}_{r n-1, j}(z ; f):=\frac{1}{m} \sum_{q=0}^{m-1} \tilde{B}_{r n-1, j}\left(z \omega^{-q} ; f_{q}\right), \quad j=0,1, \ldots, \tag{4.3}
\end{align*}
$$

where we have again used the notation $f_{q}(z)=f\left(z \omega^{q}\right)$. Note that $\tilde{b}_{r n-1}\left(z \omega^{-q} ; f_{q}\right)$ is the unique 2-periodic lacunary interpolant of $\left(0, m_{1}, \ldots\right.$, $m_{r_{1}-1}$) interpolation on S_{q} and ($\tilde{m}_{0}, \tilde{m}_{1}, \ldots, \tilde{m}_{r_{2}-1}$) interpolation on S_{m+4} for $q=0,1, \ldots, m-1$. Using an argument similar to that given for Theorem 3 of Section 3 and the results of [10, Sect.5], one can verify the following extension of Theorem 1 in [10].

Theorem 5. Let $f \in A_{\rho}$ and l and β as in Theorem 1. Using the above notation, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\tilde{H}_{r n-1}(z ; f)-\sum_{j=0}^{1} \tilde{H}_{r n-1 . j}(z ; f)\right\}=0, \quad \forall|z|<\rho^{1+\beta m / r}, \tag{4.4}
\end{equation*}
$$

the convergence being uniform and geometric for all $|z| \leqslant Z<\rho^{1+\beta m / r}$. Moreover, the result (4.4) is best possible.

Actually, we can obtain a different result along these lines using an idea similar to the averages used in Rivlin [7] for interpolation on the Tchebycheff nodes and extrema. Let $\tilde{b}_{r n-1}(z ; f)$ be defined by (4.2) upon interchanging the roles of S_{0} and S_{m} there. (Note that $\tilde{\tilde{b}}_{r n-1}(z ; f) \equiv$ $\tilde{b}_{m-1}\left(z \omega^{-m} ; f_{m}\right)$.) Next, define new averages $\tilde{\tilde{H}}_{r n-1}(z ; f)$ and $\tilde{\tilde{H}}_{r n-1, j}(z ; f)$, $j=0,1, \ldots$, using (4.3) with the obvious modifications. If we let $R_{m-1}(z ; f)$ $\left(R_{r n--1, j}(z ; f)\right)$ denote the average of $\tilde{H}_{r n-1}(z ; f)$ and $\tilde{\tilde{H}}_{r n-1}(z ; f)$ $\left(\tilde{H}_{r n-1, j}(z ; f)\right.$ and $\tilde{\tilde{H}}_{r n-1, j}(z ; f)$), then Theorem 5 is valid for these averages if the radius of overconvergence is replaced by $\rho^{1+2 \beta m / r}$.
C. Mixed Hermite interpolation. Consideration of [10, Sect. 6] suggests that we consider extensions of Theorem 3 using mixed Hermite interpolation. Such extensions analogous to Theorem 5 are easily seen to hold.

Acknowledgment

[^1]
References

1. B. M. Baishansky, Equiconvergence of interpolating processes, Rocky Mountain J. Math. 11 (1981), 483-490.
2. A. S. Cavaretta, Jr., A. Sharma, and R. S. Varga, Interpolation in the roots of unity: An extension of a theorem of J. L. Walsh, Resultate Math. 3 (1981), 155-191.
3. A. S. Cavaretta, Jr., A. Sharma, and R. S. Varga, Hermite-Birkhoff interpolation in the nth roots of unity, Trans. Amer. Math. Soc. 259 (1980), 621-628.
4. K. O. Geddes and J. C. Mason, Polynomial approximation by projections on the unit circle, SIAM J. Numer. Anal. 12 (1975), 111-120.
5. J. A. Palagallo and T. E. Price, Jr., Near best approximation by averaging polynomial interpolants, in preparation.
6. T. E. Price, Jr., The numerical approximation of analytic functions in the complex domain, J. Comput. Appl. Math. 6 (1980), 177-182.
7. T. J. Rivlin, On Walsh equiconvergence, J. Approx. Theory 36 (1982), 334-345.
8. E. B. Saff, A. Sharma, and R. S. Varga, An extension to rational functions of a theorem of \mathbf{J}. L. Walsh on differences of interpolating polynomials, RAIRO Anal. Numer. 15 (1981), 371-390.
9. E. B. Saff and R. S. Varga, A note on the sharpness of J. L. Walsh's theorem and its extensions for interpolation in the roots of unity, Acta Math. 41 (1983), 371-377.
10. R. B. Saxena, A. Sharma, and Z. Ziegler, Hermite-Birkhoff interpolation on the roots of unity, J. Linear Algebra Appl. 52 (1983), 603-615.
11. J. Szabados and R. S. Varga, On the overconvergence of complex interpolating polynomials, J. Approx. Theory 36 (1982), 346-363.
12. J. L. Walsh, "Interpolation and Approximation by Rational Functions in the Complex Domain," 5th ed., Amer. Math. Soc. Colloquium Publications, Vol. XX, Providence, R.I., 1969.

[^0]: * This research was supported, in part, by a Summer Faculty Research Fellowship from the University of Akron, Akron, Ohio.

[^1]: The author would like to express his appreciation to the referee for many helpful suggestions.

